

An Atomistic Solution: TNL FullBand (FBS) Simulator

COMPANY OVERVIEW

Flow

Radiation Monitoring System

Night Vision & Border Surveillance

Medical Radiation Dosimetry

COMPANY OVERVIEW

Development Offices

- Lucknow, UP, India 1.
- **IISC Bangalore, India** 2.
- Hyderabad, India 3.

Sales & Support Offices

- Delhi 1.
- Lucknow 2.
- Hyderabad 3.

Customers

- **Indian Defence Labs** 1.
- **Indian Space Labs** 2.
- Universities 3.
- **R & D labs (Europe)** 4.
- **Teledyne e2v (USA)** 5.

CORE TEAM MEMBERS

TNL's tools support advanced and unique licensing models tailored for unique customer needs.

- > ADVANCED LICENSING OPTIONS:
- Term-Based
- Perpetual
- TCAD Academic Suite
- 24x7 Technical Support for Academic Institutions

ATOMISTIC TCAD TOOLS

D Epitaxial Growth Process Material Characterization Material Characterization Particle based Device Impact of Radiation / High Frequency EM waves (under **Development**)

TNL-FBS SIMULATOR

Free Electrons

□ Most transport descriptions in semiconductors treat electrons as quasi-free particles

□ For free particles, the electron wave function is the solution to the time-independent Schrödinger equation:

$$\left(\frac{\hbar^2}{2m}\nabla^2 + E\right)\phi(r) = 0$$

□ The solutions form the basis of plane waves:

$$\emptyset_k(r) = C_k e^{iks}$$

with

□ The velocity, **v**, **of a particle represented by a wave packet** centered around the crystal momentum, **k**, **is obtained from** the *dispersion relation between* **k** and the energy E as

$$E_k = \frac{\hbar^2 k^2}{2m} \dots \dots \dots v = < \left| \frac{\hbar}{i} \nabla \right| > = \frac{1}{\hbar} \nabla_k E_k = \frac{\hbar k}{m}$$

 $k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2} = \frac{2mE}{\hbar^{2}}$

$$D(E)dE = \frac{2m^{3/2}E^{1/2}}{\sqrt{2}\pi^2\hbar^3}dE$$

Full Band Simulator

- Electronic structure of IV, III-V and II-VI alloys is simulated using standard lattice constant "a" of the compounds.
- □ Virtual Crystal Approximation used to obtain "a" for ternary alloys.

□ Inclusion of a semi-empirical disorder contribution.

Non-Parabolicity & Parabolicity effects include

- □ The different parameter of carriers in different bands and valleys.
- □ The absolute minima of the conduction band of most III-V and II-VI semiconductors lie at the r point.
- □ Main valleys energies, effective masses with nonparabolicity factors, carrier group velocity, DOS etc.

Full Band Simulator

Empirical An optimized Pseudopotential Method (EPM) in conjunction with Virtual Crystal Approximation (VCA) and the compositional disorder effect are inbuilt FBS Simulator in for simulation to extract the ACCURATE full electronic band structure of various elemental & compound semiconductors to ensure excellent agreement with the experiments.

- Electronic band structure can accurately predict electronic as well as optical properties and work as a source of factual information about semiconductors.
- Electronic band structure is calculated by solution of one electron Schrodinger wave equation
- Relatively easy for calculation of the electronic band structure in contrast to ab-initio methods
- Only valence electrons contribute in calculation of electronic band structure
- Bandgap engineering by introducing impurity can provide useful design guidelines

Group-III Nitrides: Full Band Analysis

Energy difference obtained using FullBand simulator based on the proposed model compared with those reported earlier, with those computed from reported various density functional theory (DFT) techniques and with experimental results

Material	Previously	ELDA	ELDA-1/2	DFTPBE	DFT ^{HSE}	Experiment	E ^{This} work
	reported					S	
	values of E _g						
AlN	6.54 ⁷ , 6.23 ¹⁰	4.50 ^{5,7}	6.06 ⁵	4.137,	6.427,	6.23 ⁵ ,	6.20
				4.02^{20}	6.29 ²⁰	6.026 ¹⁷ ,	
						6.1-6.2 ^{7,20}	
GaN	3.57, 3.507 ¹⁰	2.02^5 ,	3.52 ⁵	1.69 ^{7,20}	3.55 ^{7,}	3.507 ⁵ ,	3.47
		2.11^{7}			3.55^{20}	3.35 ²² ,	
						3.51^{20}	
InN	$0.7 - 1.0^{7,8},$	-0.03 ⁵ ,	0.95 ⁵	$-0.42^{7,20}$	0.867,	0.7-1.9 ⁵ ,	0.7
	$0.7 - 1.9^{10}$	-0.247			0.86^{20}	$0.6 - 0.7^{20}$	
Al _{0.2} Ga _{0.8} N	3.99*	2.353 ⁵	3.951 ⁵	4.570^{12}	4.569 ¹²	3.962 ²⁴	3.94
In _{0.2} Ga _{0.8} N	2.72-2.78*	1.525	2.76^{5}	2.272^{5}	1.925 ¹²	2.625^{23}	2.66
In _{0.2} Al _{0.8} N	4.7 - 4.76*	3.4315	4.409 ⁵	3.445 ¹²	2.976 ¹²	4.515 ²⁵	4.71

* Scientific Reports, Nature Journal 2020

ZnO: Full Band Analysis

Different DFT based calculated energy band gap of ZnO materials within the conventional DFT (LDA and PBE functional), LDA + U functional, and hybrid functional (HSE06) along with the lattice parameters, structural internal parameters (u) and disorder constants (P). The calibrated energy gap of ZnO materials using FullBand simulator and Experimental band gap are also included for comparison.

DFT	LDA	PBE	HSE06	LDA+U	Experimental	This
Methods						Work
a (Å)	3.210 ³	3.284 ^{4.5}	3.262 ^{4.5}	3.1976	3.253 ¹⁹⁻²¹	3.254
c (Å)	5.136 ³	5.296 ^{4.5}	5.212 ^{4.5}	5.1546	5.205 ¹⁹⁻²¹	5.21
u	0.380	0.378	0.381	0.378	0.380	0.380
P *	0.000	0.002	-0.001	0.002	0.000	0.000
Eg (eV)	0.7941 ³	3.413 ^{4.5}	2.464 ^{4.5}	1.1541 ⁶	3.44 ³⁻⁵	3.428

* Journal of Electronic Materials (under Review).

ZnO: Full Band Analysis

	t (nm)						tice	Internal	Bond	Optical	Simulated
ZnO Samples	UDS (IIIII)			t _{WH}	Studin	Cons	stant	Parameter	Length (Å)	Band	Band gap
	(100)	(002)	(101)	(nm)	Stram	a (Å)	c (Å)	u (P)		gap (eV)	(eV)
Undoped	11	18	10	26	6.5×10 ⁻³	3.246	5.238	0.398	2.013	3.22	3.22
1at.% Cd	16	20	17	13	-8.0 ×10 ⁻³	3.328	5.190	0.4023	2.009	3.20	3.19
2at.% Cd	19	21	19	26	1.5 ×10-3	3.332	5.161	0.4025	2.007	3.19	3.22
3at.% Cd	11	18	10	31	10.0 ×10 ⁻³	3.313	5.225	0.4040	2.006	3.15	3.15
1at.% Sr	14	10	17	7.48	-1.64×10 ⁻²	3.256	5.194	0.389	1.978	3.25	3.27
2at.% Sr	21	9	16	10.27	4.27×10 ⁻²	3.251	5.194	0.389	1.976	3.26	3.26
3at.% Sr	9	6	6	4.14	9.95×10 ⁻²	3.271	5.223	0.389	1.988	3.28	3.33
1at.% Fe	5	8	9	1.43	-14.8×10 ⁻²	3.236	5.194	0.380	1.967	3.24	3.26
2at.% Fe	3	5	7	0.65	-34.5×10 ⁻²	3.231	5.194	0.380	1.968	3.26	3.25
3at.% Fe	8	5	7	9.06	6.6×10 ⁻²	3.231	5.186	0.380	1.970	3.29	3.25

Undoped, Cd, Sr and Fe doped ZnO thin films prepared by Sol gel technique along with optical and simulated energy band gaps.

ZnO: Full Band Analysis

Extracted Alloy disorder parameters for Cd, Sr and Fe doped ZnO thin films deposited by sol-gel spin coating method.

ZnO Samples	Alloy Disorder Parameters (P)
1at.% Cd doped	0.01544
2at.% Cd doped	0.014562
3at.% Cd doped	0.019986
1at.% Sr doped	0.008008
2at.% Sr doped	0.00841
3at.% Sr doped	0.008263
1at.% Fe doped	0.000613
2at.% Fe doped	0.001012
3at.% Fe doped	0.000614

Full Band Simulator

Valley Location

A

R

		2%Cd	3%Cd	1%Sr	2%Sr	3%Sr	1%Fe	2%Fe	3%Fe
5	1%Cd								
	6.022	6.087	6.043	5.659	5.643	5.740	5.488	5.469	5.467
	8.520	8.563	8.533	8.274	8.265	8.329	8.156	8.143	8.141
	6.644	6.669	6.620	6.687	6.679	6.736	6.714	6.697	6.692
	6.712	6.787	6.731	6.377	6.355	6.474	6.229	6.215	6.207
	6.971	6.990	6.936	6.695	6.677	6.787	6.564	6.542	6.535
	3.193	3.222	3.156	3.271	3.255	3.331	3.268	3.253	3.245
	6.021	6.086	6.043	5.659	5.643	5.740	5.488	5.469	5.467
	9.499	9.496	9.490	9.541	9.540	9.544	9.551	9.549	9.548

Energy difference at various valleys locations (difference of energies band 9 and band 8) of undoped, Cd, Sr and Fe doped ZnO thin films.

L	6.644	6.669	6.620	6.687	6.679	6.736	6.714	6.697	6.692
Μ	6.712	6.787	6.731	6.377	6.355	6.474	6.229	6.215	6.207
Σ	6.971	6.990	6.936	6.695	6.677	6.787	6.564	6.542	6.535
Г	3.193	3.222	3.156	3.271	3.255	3.331	3.268	3.253	3.245
Α	6.021	6.086	6.043	5.659	5.643	5.740	5.488	5.469	5.467
S	9.499	9.496	9.490	9.541	9.540	9.544	9.551	9.549	9.548
н	8.367	8.368	8.335	8.559	8.551	8.572	8.701	8.700	8.690
K	8.011	8.020	7.980	8.193	8.185	8.214	8.341	8.339	8.328
Т	8.580	8.576	8.546	8.805	8.798	8.814	8.944	8.941	8.934

Thank You Contact us

