

An Atomistic Solution: Semiconductors **Growth, Material & Device Characterization**

Technology of Next Level driven through innovation

COMPANY OVERVIEW

Radiation Monitoring System

Night Vision & Border Surveillance

Medical Radiation Dosimetry

CORE TEAM MEMBERS

ATOMISTIC TCAD TOOLS

 Epitaxial Growth Process
Material Characterization
Material Characterization
Particle based Device
Impact of Radiation / High Frequency EM waves (under Development)

Epitaxial Growth of Group IV, III-V & II-VI Semiconductors

CRYSTAL GROWTH

□ State of the art device technologies depends on: **Purity & Perfection of the** crystals Limited to Si, GaAs and

upto some extent for InP

SILICON

- Available in up to >30 cm diameter
- Quite inexpensive and high quality
- Can be obtained n-type, p-type, or with high resistivity
- Used for Si and SiGe technologies
- Intense reserach to develop Sibased "pseudo-substrates" for GaAs, InP, CdTe...technologies

GaAs Available in up to >12 cm diameter

- High quality, more expensive than
- Si, but affordable
- · Used for GaAs and AlGaAs, and strained InGaAs technologies
- Can be used for electronic and optoelectronic applications

- SiC Small, very expensive substrates
- Very important for high power. large gap technologies
- Used for nitride technology

InP

- 10 cm diameter available, but expensive
- InP and InGaAsP technologies can be grown
- Very important for optoelectronics and high performance electronics

EPITAXIAL GROWTH CHALLENGES

Development of psuedosubstrates

Substrate B Buffer layer Substrate A

*E.T. Yu, J.O. McCaldin, T.C. McGill, Band offsets in semiconductor heterojunctions, in: E. Henry, T. David (Eds.), Solid State Physics, Academic Press, 1992, pp. 1–146

 Group IV, III-V, II-VI epi-growth due to multi components of the growth system
Point defects, e.g. vacancies, interstitial atoms, impact on the performance of the device

 Extended defects within the film are generally dislocations and stacking faults
Dislocations can reduce or relax strain introduced through lattice mismatch or thermal expansion differences.

GaN growth over:

Substrate	Si	Al ₂ O ₃	SiC	Bulk GaN	AIN
Lattice Mismatch (%)	17	16	3.4	-	2.5
Thermal Conductivity (W/mm-k)	150	35	490	260	319
Resistivity (ohm-cm)	104	10 ¹⁴	~10 ¹²	-	> 10 ¹⁴

EPITAXIAL GROWTH CHALLENGES

Edge Dislocation

□ Vacancies

Interstitial

Grain Boundaries

Chungnam Natl Univ., S. K. Hong

- Empirical relations procedures, difficult to use if the reactants or the reactor geometry is change
- Statistical methods create purely empirical models of reactor behavior
- Mathematical modeling and simulation provide upto some extend economic alternative to trial and error-based experimental techniques
- To fulfill the increasing demand by the industry: epiwafer supplies very difficult and time-consuming tasks
- Lack of detailed fundamental models has forced industrial CVD practitioners to rely on methods of trial and error: Expensive

EpiGrow Simulator

Innovative Atomistic Reactor Simulation

Inbuilt Reactors

GasMBE

CVD & PVD (under development)

EpiGrow Simulator

- **Users growth conditions**
- □ Surface profiles Extracting Roughness
- **Defects Extraction (point/clusters)**
- **Extraction of dislocations & Stress/** Strain
- □ Fewer experiments for optimization
- Reduction in waste during experimentation
- □ Ability to deal with different reactive species and reactor geometries
- **On-line process control**

EpiGrow Simulator

□ Incorporation barrier: The atom incorporates into the edge on the same surface level.

□ Strain: ⇒ $(a - a_0) / a_0$ □ Sticking coefficient ⇒ $s_c = P_{ads}(1 - m) \sum_{n=0}^{\infty} P_{hop}^n$

Total Rates $R_T = R_{ads} + R_{hop} + R_{des}$ Here ads ~ adsorption Rate on substrate , Hop ~ hopping rate on substrate Des ~ desorption rate

Side view for the case of Schwoebel barrier (a) and that of incorporation barrier (b), where the white atom is the diffusing one.

GaAs/GaN: MBE EpiGrowth

			Input variables	Initialize configuration and rate lists
🔛 Epi-Grow	-	- 🗆 🗙		
EpiGrow Run Output				
				Determine all possible rates
Substrate Select St	ubstrate v			
Orientation Orientation	○ 111			↓
Substrate Dimension 10				Transform rates into wait times
Reactor MBE	Time Interval for Roughness Calculation	2		
Number of Steps	Substrate Temperature (°C)	800		
Surface Energy (eV) 2.0	Time (Step 1)	10		Select lowest wait time
Schwoebel Barrier (eV) 0.5	Nearest Neighbour Energy (eV)	0.5		└─── ∀
Incorporation Barrier (eV) 0.5	Desorption Barrier (eV)	3.0		Execute event at site update
				time
Number of Effusior Cells				↓
Effusior Cell Port 1	select Element			Update lists
Cell's Orifice Area (cm ²) 5.0	Cell Angle (degree) 5			V
Distance from Substrate (cm) 15			(NO) < ──	Time>final time
Crucible Temperature (°C)	50			¥
Sticking Coefficient of Element 1.0	D			
	Load Data			(YES
				¥
				Output
RESET	ADD	RUN		

GaAs/GaN: MOCVD EpiGrowth

Epi-Grow

EpiGrow Run Output

×

Gas-phase Mechanisms:

			k =	AT ⁿ e ⁻	Ea/RT					Α	n	Ea
G1	TMG	=	DMG	+	CH ₃					1.00×10^{47}	-9.18	76,996
G2	DMG	=	MMG	+	CH ₃					7.67×10^{43}	-9.8	34,017
G3	MMG	=	Ga	+	CH ₃					1.68×10^{30}	-5.07	84,030
G4	TMG	+	NH ₃	\rightarrow	TMG:NH ₃					2.28×10^{34}	-8.31	3115
G5	TMG	+	NH ₃	\rightarrow	DMG:NH ₂	+	CH_4			1.70×10^{4}	2	19,969
G6	DMG	+	NH ₃	\rightarrow	DMG:NH ₃					4.08×10^{31}	-7.03	3234
G7	DMG	+	NH ₃	\rightarrow	MMG:NH ₂	+	CH ₄			5.30×10^{5}	1.56	20,744
G8	MMG	+	NH ₃	\rightarrow	MMG:NH ₃					7.95×10^{24}	-5.21	2094
G9	MMG	+	NH ₃	\rightarrow	GaNH ₂	+	CH ₄			8.10×10^{5}	1.3	17,722
G10	NH ₃	+	CH ₃	\rightarrow	NH ₂	+	CH ₄			3.31×10^{3}	2.51	9859
G11	CH ₃	+	H ₂	\rightarrow	CH ₄	+	H			1.20×10^{12}	0	12,518
G12	TMG	+	Н	\rightarrow	DMG	+	CH ₄			5.00×10^{13}	0	10,036
G13	DMG	+	Н	\rightarrow	MMG	+	CH ₄			5.00×10^{13}	0	10,036
G14	TMG:NH ₃	\rightarrow	MMG	+	2CH ₃	+	NH ₃			1.33×10^{44}	-8.24	77,791
G15	CH ₃	+	Н	+	M	\rightarrow	CH ₄	+	NH ₃	2.40×10^{22}	-1	0
G16	2CH ₃	=	C_2H_6							2.00×10^{13}	0	0
G17	2H	+	M	-	H ₂	+	М			2.00×10^{16}	0	0

Surface phase Mechanisms:

			Path 1, $k = 1$		A	n	Ea			
1	MMG	+	N(S)	\rightarrow	MMG(S)			1.16×10^5	2.98	0
2	MMG(S)	\rightarrow	MMG	+	N(S)			1.12×10^{14}	0.55	107,673
3	NH ₃	+	MMG(S)	\rightarrow	COMPM1(S)			3.35×10^{7}	3.33	0
4	COMPM1(S)	\rightarrow	NH ₃	+	MMG(S)			5.70×10^{13}	-0.16	8146
5	MMG	+	COMPM1(S)	\rightarrow	CH4	+ C(OMPM2(S)	1.23×10^{10}	3.22	23,446
6	NH ₃	+	COMPM2(S)	\rightarrow	COMPM3(S)			3.35×10^{7}	3.33	0
7	COMPM3(S)	\rightarrow	NH ₃	+	COMPM2(S)			5.70×10^{13}	-0.161	8146
8	MMG	+	COMPM3(S)	\rightarrow	CH ₄	+ C(OMPM4(S)	1.23×10^{10}	3.22	23,446
9	NH ₃	+	COMPM4(S)	\rightarrow	COMPM5(S)			3.35×10^{7}	3.33	0
10	COMPM5(S)	\rightarrow	NH ₃	+	COMPM4(S)			5.70×10^{13}	-0.161	8146
11	COMPM5(S)	\rightarrow	CH4	+	RINGM1(S)			1.23×10^{7}	3.22	23,446
12	Ga(S)	+	RINGM1(S)	\rightarrow	RINGM2(S)	+	N(S)	3.35×10^{7}	3.33	0
13	RINGM2(S)	\rightarrow	3H ₂	+	3GaN(B)	+	Ga(S)	3.68×10^9	2.05	59,610

Substrate	Select Substrate		
Orientation	◯ 100 ◯ 111		
	10		
Substrate Dimension		Interval for Roughness Calculation	2
Reactor			2
Number of Steps	0 Subs	strate Temperature (°C)	800
Surface Energy (eV)	2.0 Time	(Step 1)	10
Schwoebel Barrier (eV)	0.5 Near	est Neighbour Energy (eV)	0.5
Incorporation Parrier (a)()			2.0
incorporation Barrier (ev)	0.5 Desc	orption Barrier (ev)	3.0
Precursor source MOCVD Paramet	er		
Showerhead Dimension	10		
Area (cm ⁻)) Parameters		
Height (cm)	2.0		
Chamber Radius (cm)	15.0		
Chamber Volume (L)	1.4		
	Load		

			Path 2, $k = A$	T ⁿ e ^{-Ea}	⊿RT	A	n	Ea
14	CH ₃	+	Ga(S)	\rightarrow	MMG(S)	1.76×10^{9}	1.39	0
15	MMG(S)	\rightarrow	CH ₃	+	Ga(S)	4.54×10^{13}	0.0346	79,480
16	NH ₂	+	Ga(S)	\rightarrow	NH ₂ (S)	3.17×10^{8}	1.83	0
17	GaNH ₂	+	N(S)	\rightarrow	GaNH ₂ (s)	2.27×10^{6}	2.247	0
18	GaNH ₂ (S)	\rightarrow	GaNH ₂	+	N(S)	4.83×10^{13}	0.614	83,881
19	COMPMM1(S)	\rightarrow	CH ₄	+	GaNH ₂ (S)	1.49×10^{11}	0.609	25,950
20	MMG	+	GaNH ₂ (S)	\rightarrow	COMPMM1(S)	1.16×10^{5}	2.98	0
21	NH ₃	+	COMPMM1(S)	\rightarrow	COMPMM2(S)	3.35×10^{7}	3.33	0
22	COMPMM2(S)	\rightarrow	CH ₄	+	COMPMM3(S)	1.49×10^{11}	0.609	25,950
23	MMG	+	COMPMM3(S)	\rightarrow	COMPMM4(S)	1.16×10^{5}	2.98	0
24	NH ₃	+	COMPMM4(S)	\rightarrow	COMPMM5(S)	3.35×10^{7}	3.33	0
25	COMPMM5(S)	\rightarrow	CH ₄	+	RINGM1(S)	1.49×10^{11}	0.609	25,950
26	NH ₂ (S)	\rightarrow	NH ₂	+	Ga(S)	1.45×10^{14}	0.09	59,786
27	COMPMM1(S)	\rightarrow	MMG	+	GaNH ₂ (S)	$1.00 imes 10^{14}$	0.55	42,819
28	COMPMM2(S)	\rightarrow	NH ₃	+	COMPMM1(S)	5.70×10^{13}	-0.1	8146
29	COMPMM4(S)	\rightarrow	MMG	+	COMPMM3(S)	1.00×10^{14}	0.55	42,819
30	COMPMM5(S)	\rightarrow	NH ₃	+	COMPMM4(S)	5.70×10^{13}	-0.1	8146
31	Ga	+	N(S)	\rightarrow	Ga(S)	1.00×10^{11}	1.5	0
32	Ga(S)	+	NH ₂ (S)	\rightarrow	GaNH ₂ +Ga(S)	1.00×10^{25}	0	0
33	Ga(S)	\rightarrow	Ga	+	N(S)	1.00×10^{13}	0	45,168
34	6CH ₃	+	RINGM2(S)	\rightarrow	COM1(S)	7.55×10^{7}	2.31	0
35	COM1(S)	\rightarrow	6CH ₃	+	RINGM2(S)	1.00×10^{13}	0.71	45,506
36	COM1(S)	\rightarrow	6CH ₄	+	3GaN(B) +Ga(S)	$4.00 imes 10^{12}$	0	49,675

Surface phase Mechanisms: PATH 3

			P	ath 3, 1	$k = AT^n e^{-Ea/RT}$			A	n	Ea
37	TMG	+	N(S)	\rightarrow	TMG(S)			1.16×10^5	2.98	0
38	NH ₃	+	TMG(S)	\rightarrow	TCOM1(S)			3.35×10^{7}	3.33	0
39	TCOM1(S)	\rightarrow	CH ₄	+	TCOM2(S)			1.49×10^{11}	0.609	32,785
40	Ga(S)	+	TCOM2(S)	\rightarrow	TCOM3(S)	+	N(S)	3.35×10^{7}	3.33	0
41	TCOM3(S)	\rightarrow	2CH ₄	+	GaN(B)	+	Ga(S)	1.49×10^{11}	0.609	49,675
42	TMG(S)	\rightarrow	TMG	+	N(S)			1.12×10^{14}	0.55	49,675
43	TCOM1(S)	\rightarrow	NH ₃	+	TMG(S)			5.70×10^{13}	-0.161	11,922
44	TMG:NH ₃	+	N(S)	\rightarrow	TCOM1(S)			1.16×10^{5}	2.98	0
45	TCOM1(S)	\rightarrow	TMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	49,675
46	TCOM1(S)	\rightarrow	2CH ₃	+	MMG(S)	+	$NH_3 + N(S)$	1.12×10^{14}	0.55	10,7673
47	MMGNH ₃	+	N(S)	\rightarrow	COMPM1(S)			1.16×10^{5}	2.98	0
48	COMPM1(S)	\rightarrow	MMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	107,673
49	MMG:NH ₃	+	COMPM1(S)	\rightarrow	CH_4	+	COMPM3(S)	1.23×10^{10}	3.22	23,446
50	MMG:NH ₃	+	COMPM3(S)	\rightarrow	CH ₄	+	COMPM5(S)	1.23×10^{10}	3.22	23,446
51	MMG:NH ₃	+	GaNH ₂ (S)	\rightarrow	COMPMM2(S)			1.16×10^5	2.98	0
52	MMG:NH ₃	+	COMPMM3(S)	\rightarrow	COMPMM5(S)			1.16×10^{5}	2.98	0

Chemical Composition of compound on the surface

Compounds Names	Chemical Formula
COMPM1(S)	NH ₃ ·MMG(S)
COMPM2(S)	Ga·NH ₂ ·MMG(S)
COMPM3(S)	NH3·Ga·NH2·MMG(S)
COMPM4(S)	Ga·NH2·Ga·NH2·MMG(S)
COMPM5(S)	NH3·Ga·NH2·Ga·NH2·MMG(S)
RINGM1(S)	NH2 ·Ga·NH2 ·Ga·NH2 ·Ga(S)
RINGM2(S)	(S)NH2 ·Ga·NH2 ·Ga·NH2 ·Ga(S)
COMPMM1(S)	MMG·GaNH ₂ (S)
COMPMM2(S)	NH3·MMG·GaNH2·Ga(S)
COMPMM3(S)	NH2 ·Ga·NH2 ·Ga(S)
COMPMM4(S)	MMG·NH2·Ga·NH2·Ga(S)
COMPMM5(S)	NH3·MMG·NH2·Ga·NH2·Ga(S)
TCOM1(S)	NH ₃ ·TMG(S)
TCOM2(S)	NH ₂ ·DMG(S)
TCOM3(3)	(S)NH ₂ ·DMG(S)
COM1(S)	RINGM2(S)-CH3 complex

OUTPUT Results

1. Lattice Constant :

 Layer by layer lattice constant Extraction.
Averaging layer by layer lattice constant may produce overall lattice constant of film.
The lattice constant can be calibrated with

XRD studies obtained lattice constant .

□ Lattice constant includes all the strain, defects etc effects.

2. Strain:

Averaging layer by layer strain will produce overall strain in the film.

□ The strain can be calibrated with experimental strain.

3. Surface Roughness:

User may extract surface roughness w.r.t time, included through

$$r = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} [h_{ij} - \overline{h}]^2}{NxN}}$$

Here N is the total number of lattice points, h_{ij} is the height at a given lattice point located at position *i* and *j*, on the lattice and h_{avg} is the average height of all lattice points.

4. Mole fraction:

User may extract number of atoms of different constituents layer by layer.

□ Ratio of group-III & V atoms, molefraction can be produced.

5. Defects :

□ User may extract number of interstitials, vacancy etc layer by layer

Controlled Epitaxial Growth of GaAs in real MOCVD Reactor Environment*

*P. K. Saxena, P. Srivastava, R. Trigunayat, An innovative approach for controlled epitaxial growth of GaAs in real MOCVD reactor environment, *Journal of Alloys and Compounds* 809 (2019) 151752.

GaAs: MOCVD EpiGrowth

GaAs monolayers growth over GaAs

Material Characterization of thin/thick Film

Full Band Structure

□ Electronic band structure of IV, III-V and II-VI alloys using standard lattice constant "a"

□ Virtual Crystal Approximation for ternary alloys.

□ Semi-empirical disorder contribution.

Non-Parabolicity & Parabolicity effects

□ Main valleys energies, effective masses with nonparabolicity factors, carrier group velocity, DOS etc.

Case Studies

Material Characterization through Electronic Transport on Band Structure

* Praveen K Saxena *at. el.,* An Innovative Model for Electronic Band Structure Analysis of doped and undoped ZnO, *Journal of Electronic Materials Accepted for publication*.

*Anshika Srivastava, Anshu Saxena, Praveen K. Saxena, F. K.Gupta, Priyanka Shakya, *at. el.*, An innovative technique for electronic transport model of group-III nitrides, *Scientific Reports nature research* (2020) **10**:18706.

ZnO: Full Band Simulator

Different DFT based calculated energy band gap of ZnO materials within the conventional DFT (LDA and PBE functional), LDA + U functional, and hybrid functional (HSE06) along with the lattice parameters, structural internal parameters (u) and disorder constants (P). The calibrated energy gap of ZnO materials using FullBand simulator and Experimental band gap are also included for comparison.

DFT	LDA	PBE	HSE06	LDA+U	Experimental	This
Methods						Work
a (Å)	3.210 ³	3.284 ^{4.5}	3.262 ^{4.5}	3.1976	3.253 ¹⁹⁻²¹	3.254
c (Å)	5.136 ³	5.296 ^{4.5}	5.212 ^{4.5}	5.154 ⁶	5.205 ¹⁹⁻²¹	5.21
u	0.380	0.378	0.381	0.378	0.380	0.380
P*	0.000	0.002	-0.001	0.002	0.000	0.000
Eg (eV)	0.7941 ³	3.413 ^{4.5}	2.464 ^{4.5}	1.1541 ⁶	3.44 ³⁻⁵	3.428

* Journal of Electronic Materials (accepted for Publication).

ZnO: Full Band Simulator

	ZnO Samples					Lat	tice	Internal	Bond	Optical	Simulated
7nO Samplas				t _{WH}	Strain	Cons	stant	Parameter	Length (Å)	Band	Band gap
Zito Samples	(100)	(002)	(101)	(nm)	Stram	a (Å)	c (Å)	u(P)		gap	(eV)
	()	()	()							(eV)	
Undoped	11	18	10	26	6.5×10-3	3.246	5.238	0.398	2.013	3.22	3.22
0.45at.% Cd	16	20	17	13	-8.0 ×10 ⁻³	3.328	5.190	0.4023	2.009	3.20	3.19
0.51at.% Cd	19	21	19	26	1.5 ×10-3	3.332	5.161	0.4025	2.007	3.19	3.22
0.56at.% Cd	11	18	10	31	10.0 ×10 ⁻³	3.313	5.225	0.4040	2.006	3.15	3.15
1at.% Sr	14	10	17	7.48	-1.64×10 ⁻²	3.256	5.194	0.389	1.978	3.25	3.27
2at.% Sr	21	9	16	10.27	4.27×10 ⁻²	3.251	5.194	0.389	1.976	3.26	3.26
3at.% Sr	9	6	6	4.14	9.95×10 ⁻²	3.271	5.223	0.389	1.988	3.28	3.33
1at.% Fe	5	8	9	1.43	-14.8×10 ⁻²	3.236	5.194	0.380	1.967	3.24	3.26
2at.% Fe	3	5	7	0.65	-34.5×10-2	3.231	5.194	0.380	1.968	3.26	3.25
3at.% Fe	8	5	7	9.06	6.6×10 ⁻²	3.231	5.186	0.380	1.970	3.29	3.25

Undoped, Cd, Sr and Fe doped ZnO thin films (Sol gel) along with optical and simulated energy band gaps

* Journal of Electronic Materials (accepted for Publication).

Group-III Nitrides: Full Band Simulator

Energy difference obtained using FullBand simulator based on the proposed model compared with those reported earlier, with those computed from reported various density functional theory (DFT) techniques and with experimental results

Material	Previously	ELDA	ELDA-1/2	DFT ^{PBE}	DFT ^{HSE}	Experiment	E ^{This work}
	reported					S	
	values of E _g						
AlN	6.54 ⁷ , 6.23 ¹⁰	4.50 ^{5,7}	6.06 ⁵	4.13 ⁷ ,	6.427,	6.23 ⁵ ,	6.20
				4.02^{20}	6.29^{20}	6.026 ¹⁷ ,	
						6.1-6.2 ^{7,20}	
GaN	3.57, 3.507 ¹⁰	2.02^5 ,	3.525	1.697,20	3.557,	3.507 ⁵ ,	3.47
		2.11^{7}			3.55^{20}	3.35 ²² ,	
						3.51^{20}	
InN	$0.7 - 1.0^{7,8},$	-0.03 ⁵ ,	0.955	$-0.42^{7,20}$	0.867,	0.7 - 1.9 ⁵ ,	0.7
	$0.7 - 1.9^{10}$	-0.247			0.86^{20}	$0.6 - 0.7^{20}$	
Al _{0.2} Ga _{0.8} N	3.99*	2.353 ⁵	3.951 ⁵	4.57012	4.56912	3.962 ²⁴	3.94
In _{0.2} Ga _{0.8} N	2.72-2.78*	1.52^{5}	2.76^{5}	2.272^{5}	1.925 ¹²	$\overline{2.625^{23}}$	2.66
$In_{0.2}Al_{0.8}N$	4.7 - 4.76*	3.431 ⁵	4.409^{5}	3.445 ¹²	2.976^{12}	$\overline{4.515^{25}}$	4.71

* Scientific Reports, Nature Journal (under Review).

MOBILITY CHARACTERIZATION

Free Electrons

□ For free particles, the electron wave function is the solution to the time-independent Schrödinger equation:

$$\left(\frac{\hbar^2}{2m}\nabla^2 + E\right)\phi(r) = 0$$

□ The solutions form the basis of plane waves:

$$\emptyset_k(r) = C_k e^{ik.r}$$
 with $k^2 = k_x^2 + k_y^2 + k_z^2 = \frac{2mE}{\hbar^2}$

□ The velocity, **v**, **of a particle represented by a wave packet** centered around the crystal momentum, **k**, **is obtained from** the *dispersion relation between* **k** and the energy E as

$$E_{k} = \frac{\hbar^{2}k^{2}}{2m} \dots \dots \nu = < \left|\frac{\hbar}{i}\nabla\right| > = \frac{1}{\hbar}\nabla_{k}E_{k} = \frac{\hbar k}{m} \quad \text{and} \quad D(E)dE = \frac{2m^{3/2}E^{1/2}}{\sqrt{2}\pi^{2}\hbar^{3}}dE$$

ELECMOB SIMULATOR

Features

- □ Graphical User Interface (GUI) on Windows based application
- Boltzmann transport equation solution with Ensemble Monte Carlo Technique
- □ Include standard scattering mechanisms following Fermi Golden Rule for momentum & energy
- □ Modeled beyond the effective-mass approximation on the full electronic band structure obtained from FullBand Simulator
- □ The electron-phonon, electron-impurity, and electron-electron scattering rates included in a way consistent with the full band structure of the solid
- □ Accounting for density-of-states and matrix-element effects more accurately
- **The carrier transport on the full energy band under influence of electromagnetic forces**
- □ Accurate up to particle level

ELECMOB SIMULATOR

The Boltzmann Transport Equation (BTE) is

$$\frac{df}{dt} + \nabla_k E(k) \cdot \nabla_r f + F \cdot \nabla_p f = \left| \frac{df}{dt} \right|_{scattering} + GR$$

Here f is the distribution function, E is the electric field, F is the external electromagnetic force.

Solution of 6+1 dimensional is possible through:

> A spherical harmonic expansion (SHE) method with initial approximations

> accuracy of simulation results ??

- > The ensemble Monte Carlo (EMC) technique (stochastic) is best suited to simulate non-equilibrium transport in semiconductor.
- > In Monte Carlo (MC) method, physics is more straightforward and provides flexibility in exploring physical mechanisms and carrier transport.

GROUP-III NITRIDES

The Comparison of simulated electron drift velocity as a function of applied electric field with the reported literature. Data from present work is displayed as solid lines where as experimental/theoretical results are depicted by open circles, squares and triangles for AIN, GaN and InN respectively.

Anshika Srivastava, Anshu Saxena, Praveen K. Saxena, F. K.Gupta, Priyanka Shakya, at. el., An innovative technique for electronic transport model of group-III nitrides, <u>Scientific Reports nature research</u> (2020) **10**:18706.

Γ₃- Valley

Г- Valley

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Scattering Rates

0.0

0.1

🕶 intervalley_gamma_X_ab 🥣 intervalley_gamma_X_em

0.2

0.3

TEMP EFFECT ON MOBILITIES

TNL

Mobilities Ternary Compounds

Monte Carlo Particle Device Simulator

DEVICE MODELING

Exact

- Particle device simulator takes into account the transport of Monte Carlo particles (Super particles).
- Under influence of applied field, determined self-consistently through the solution of decoupled Poisson's and BTE equation over a suitably small time-step.
- The time step is taken typically less than the inverse plasma frequency obtained with the highest carrier density in the device.

FLOW CHART

PARTICLE DEVICE SIMULATOR

Technologies implemented in Monte Carlo Particle Device Simulator:

- > MOSFET
- > FDSOI
- Tunneling FET
- > MESFET
- ➢ HEMT

Particle Device Simulator (TNL-PDS)	– 6 ×
File Edit Simulate Examples Help	
Run Unload Refresh Rese	et Exit
Technology Add Region Mesh Physics Solve	Structure Run Output Window Example Script
FD SOI	
Workspace Setting X Scale 300	
Y Scale 300 GO	
Technology Selected -> FD SOI Workspace 300 x 300 Device measures in nm	
TNL-PDS	
Tech Next Lab Pvt Ltd.	

- Poisson's solution generated over the node points of the mesh,
- Carrier transport solution is obtained using Ensemble Monte Carlo (EMC) on the full range of space coordinates in accordance with the particle distribution itself.
- Particle-mesh (PM) coupling scheme is used for assignment of carrier charge on different nodes and for calculation force on each charges.

- The classification of Particle-mesh (PM) coupling scheme is included as;
 - > Carrier charge assign at mesh nodes Charge in Cloud (CIC) scheme,
 - Solution of Poisson's equation on node points through Successive over Relaxation (SOR) method,
 - Calculation of the mesh defined electric field components,
 - Interpolation of forces at the particle positions.

- Particle Device Simulator (PDS) contains consistent boundary conditions with those imposed on the potential on the field.
- The particle boundary conditions contain Neumann (zero electric field in the direction normal to the surface) and Dirichlet (contacts) conditions.
- At Neumann boundary the reflecting boundaries has been taken.

- Density-gradient model: implemented dependent on non-local quantities.
- Density gradient model is first-order quantum-correction model describe carrier confinement by locally modifying the electrostatic potential through a correction potential γ.
- The Boltzmann-Wigner transport equation can be derived as

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{\mathbf{r}} \mathbf{f} - \frac{\mathbf{q}}{\hbar} \sum_{\alpha=0}^{\infty} \frac{(-1)^{2\alpha}}{4^{\alpha}(2n+1)!} \nabla_{k}^{2n+1} V(\mathbf{r}) \cdot \nabla_{k}^{2n+1} f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

• The corrected quantum effect is included as

$$\frac{\partial f}{\partial t} + \frac{\hbar k}{m^*} \nabla_{\mathbf{r}} \mathbf{f} - \frac{1}{\hbar} \nabla_{\mathbf{r}} \left(V(\mathbf{r}) - \nabla_{\mathbf{r}}^2 \mathbf{\emptyset} \right) \nabla_{\mathbf{k}} f = \left(\frac{\partial f}{\partial t} \right)_{coll}$$

The correction potential term in multidimensional space is

$$\gamma(\mathbf{r},t) = \frac{\hbar^2}{12\lambda k_b T m^*} \left(\nabla_{\mathbf{r}}^2 \emptyset(\mathbf{r},t) - \frac{1}{2k_b T} (\nabla_{\mathbf{r}} \emptyset(\mathbf{r},t))^2 \right)$$

The fitting parameter λ is determined by comparing the carrier density in a device structure to the carrier density obtained by the solution of Poisson Equation.

- The particle-mesh method is a widespread model for space charge calculations.
- Particle dynamics under applied electric field requires accurate solution of Poisson's equation.
- The particle simulation means the assignation of the particle's charge to the rectangular mesh.
- Two types of the most famous particle-mesh (PM) coupling schemes:
 - ➢Nearest Grid Point (NGP)
 - ➤Cloud In Cell (CIC)
 - ≻ (NEC)

GaNFET Simulation

*P. K. Saxena *at. el.*, Atomistic Level Process to Device Simulation of GaNFET Using TNL TCAD Tools, <u>Book</u> <u>Chapter, © Springer Nature</u> (2020) 176, Lecture Notes in Electrical Engineering ISBN 978-981-15-5261-8 ISBN 978-981-15-5262-5 (eBook)

GaNFET Epitaxial Growth

Epi-growth has been done with the following process parameters:

Parameters	Values	Unit	
Time	30	S	
Temperature	800	°C eV	
Surface energy	2		
Desorption barrier energy	4	eV eV	
Schwoebel barrier	0.002		
Incorporation barrier	0.05	eV	
Nearest neighbor attraction	0.05	eV	

Precursors and gas ambience used during simulation

Materials	Partial pressure					
	Ga (mbar)	Al (mbar)	N2 (mbar)			
GaN	0.3	0.0	3.0			
Ga _{0.85} Al _{0.15} N	0.3 0.03		3.0			
Ga _{0.7} Al _{0.3} N	0.28	0.05	3.0			
Ga _{0.61} Al _{0.39} N	0.25	0.10	3.0			

GaNFET Case Studies

Variation of lattice constant with Al mole fraction

Surface roughness at the interface of AlGaN/GaN

GaNFET Case Studies

GaNFET Case Studies

InGaAs/InP Infrared Photodetector

*P. K. Saxena *at. el.*, Numerical simulation of InxGa1–xAs/InP PIN photodetector for optimum performance at 298 K, *Optical and Quantum Electronics* (2020) **52**:374

Infrared Detector

p ⁺ - In _{0.53} Ga _{0.47} As (150 nm)	p- InP	<i>i</i> - In _{0.53} Ga _{0.47} As (2.5μm)	n-InP (2.6 μm)
--	-----------	--	-------------------

Infrared Detector

Doping dose (cm ⁻³)	Current density at specified absorbing layer thickness (A/cm ²)				
	2 µm	2.5 μm	3 µm		
5.1×10 ¹⁵	2.53×10^{-07}	2.53926×10^{-07}	2.54×10^{-07}		
1.1×10^{16}	1.62×10^{-07}	1.63×10^{-07}	1.63×10^{-07}		
5.1×10^{16}	2.6456×10^{-08}	2.6898×10^{-08}	2.7595×10^{-08}		

Quantum Efficiency

Infrared Detector

FDSOI MOSFET

*P. K. Saxena *at. el.,* A Comparative Study for Scaling FDSOI Technology up to 7nm –Based on Particle device Simulation, *Jaournal of Nano & Optoelectronics*(2020), under Review.

FDSOI MOSFET

FDSOI MOSFET

FDSOI MOSFET RESULTS

arameters	Nodes (nm)	14nm	10nm	7nm	14nm	10nm	7nm	
		Single Gate			Double Gate			
	Leff (nm)	22	14	10	22	14	10	
	Weff (nm)	10		8	10		8	
e D	Tox (nm)	1	0.85	0.75	0.75	0.85	0.75	
ructur	Doping (/cm ³)	1×10 ²⁴	5×10 ²⁴	2×10 ²⁵	2×10 ²⁵	5×10 ²⁴	2×10 ²⁵	
St	Tsoi (nm)	40	30	20	20	30	20	
Device rameters	Vth (mV)	0.3	0.22	0.2	0.2	0.4	0.5	
	SS (/mV/dec)	63.3	67.9	82.9	82.9	87.4	72.2	
	gm (mS/µm)	0.252	0.437	0.499	0.499	0.494	0.449	
Pa								

FDSOI TECHNOLOGY UP TO 7NM

Scattering Rates

> Intervalley,

- Acoustic and
- Coulomb

DRIFT VELOCITY

Carrier Drift Velocity for 7nm, 10nm and 14nm (Back Gate off)

Carrier Drift velocity a) 14nm b) 10nm c) 7nm

CARRIER AVERAGE ENERGY

a) 14nm FDSOI MOSFET b) 10nm FDSOI MOSFET c) 7nm FDSOI MOSFET

Transfer I_d - V_g Characteristics

+ 7nm FDSOI

10nm FDSOI

+ 14nm FDSOI

1.05

0.95

0.90

0.85

0.80

0.75 0.70

0.65

0.50

≤ 0.40

J 0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05 -0.10

-0.15

-0.4 -0.3

-0.2

-0.1

0.0

0.1

Vg(V)

0.2

0.3

0,4

0.5

0,6

10.0

7.5

5.0

2.5

0.0

-0.4 -0.3

-0.2

-0.1

0,0

0.1

Vg(V)

0.2

0.3

0.4

0.5

0.6

Single Gate I_d - V_d Characteristics

I_V_Characteristic

I_V_Characteristic

MOSFET Transfer Characteristics

Tunneling FET

Tunneling FET

Tunneling FET Transfer Characteristics

TNL's tools support advanced and unique licensing models tailored for unique customer needs.

- > ADVANCED LICENSING OPTIONS:
- Term-Based
- Perpetual
- TCAD Academic Suite
- 24x7 Technical Support for Academic Institutions

Publications

- 1. P.K. Saxena, numerical study of dual band (MW/LW) ir detector for Performance improvement, *Defence Science Journal*, vol. 67(2), (2017) pp. 141-148. DOI : 10.14429/dsj.67.11177
- Praveen K. Saxena, Pankaj Srivastava, R. Trigunayat, An innovative approach for controlled epitaxial growth of GaAs in real MOCVD reactor environment, *Journal of Alloys and Compounds, vol.* 809 (2019) 151752. <u>https://doi.org/10.1016/j.jallcom.2019.151752</u>
- 3. Praveen Saxena, R. Trigunayat, Anchal Srivastava, Pankaj Srivastava, Md. Zain, R.K. Shukla, Nishant Kumar, Shivendra Tripathi, FULL ELECTRONIC BAND STURCTURE ANALYSIS OF Cd DOPED ZnO THIN FILMS DEPOSITED BY SOL-GEL SPIN COATING METHOD, II-VI US Workshop Proceedings, 2019.
- R. K. Nanda, E. Mohapatra, T. P. Dash, P. Saxena, P. Srivastava, R. Trigutnayat, C. K. Maiti, Atomistic Level Process to Device Simulation of GaNFET Using TNL TCAD Tools, <u>Advances in Electrical Control and Signal Systems</u> pp 815-826, (2020), Spinger Book. <u>https://doi.org/10.1007/978-981-15-5262-5_61</u>
- 5. Sanjeev Tyagi, P. K. Saxena, Rishabh Kumar, Numerical simulation of InxGa1–xAs/InP PIN photodetector for optimum performance at 298 K, Optical and Quantum Electronics (2020) 52:374. <u>https://doi.org/10.1007/s11082-020-02488-1</u>
- 6. Praveen K Saxena *at. el.,* An Innovative Model for Electronic Band Structure Analysis of doped and un-doped ZnO, *Journal of Electronic Materials Accepted for publication.*
- Anshika Srivastava, Anshu Saxena, Praveen K. Saxena, F. K.Gupta, Priyanka Shakya, at. el., An innovative technique for electronic transport model of group-III nitrides, <u>Scientific Reports nature research</u> (2020) 10:18706.

Thank You Contact us

