FullBand Simulator – TNL FBS Simulator Case Studies

1. A detailed full band analysis for Group-III Nitrides (GaN, AIN, InN, InGaN, AIGaN, AlInN etc), Lattice parameters 'a' and 'c' used as input parameters using *TNL-FBS Simulator* have been carried out.

The bandgap at Γ valley have been calibrated against experiments and compared with DFT based calculated energy band gap.

TNL

Energy difference obtained using FullBand simulator based on the proposed model compared with those reported earlier, with those computed from reported various density functional theory (DFT) techniques and with experimental results. For more details download full Article: <u>https://www.technextlab.com/Scientific_Report_Nature.pdf</u>

Material	Previously reported values of E _g (eV)	E ^{LDA} (eV)	E ^{LDA-1/2} (eV)	DFT ^{PBE} (eV)	DFT ^{HSE} (eV)	Experiments (eV)	FullBand Simulator (eV)
AIN	6.54 ⁷ , 6.23 ¹⁰	4.50 ^{5,7}	6.06 ⁵	4.13 ⁷ , 4.02 ²⁰	6.42 ⁷ , 6.29 ²⁰	6.23 ⁵ , 6.026 ¹⁷ , 6.1-6.2 ^{7,20}	6.20
GaN	3.5 ⁷ , 3.507 ¹⁰	2.02 ⁵ , 2.11 ⁷	3.52 ⁵	1.69 ^{7,20}	3.55 ^{7,} 3.55 ²⁰	3.507 ⁵ , 3.35 ²² , 3.51 ²⁰	3.47
InN	0.7–1.0 ^{7,8} , 0.7-1.9 ¹⁰	-0.03 ⁵ , -0.24 ⁷	0.955	$-0.42^{7,20}$	0.86 ⁷ , 0.86 ²⁰	0.7-1.9 ⁵ , 0.6-0.7 ²⁰	0.7
Al _{0.2} Ga _{0.8} N	3.99*	2.353 ⁵	3.951 ⁵	4.570 ¹²	4.569 ¹²	3.962 ²⁴	3.94
In _{0.2} Ga _{0.8} N	2.72-2.78*	1.52 ⁵	2.765	2.272 ⁵	1.925 ¹²	2.625 ²³	2.66
In _{0.2} Al _{0.8} N	4.7 - 4.76*	3.431 ⁵	4.409 ⁵	3.445 ¹²	2.976 ¹²	4.515 ²⁵	4.71

Here, Energy difference $(E_g = \Gamma_1^c - \Gamma_8^v)$ obtained using FullBand simulator based on the proposed model compared with those reported earlier, with those computed from previously reported various density functional theory (DFT) techniques and with experimental results. Here suffix represents the reference numbers of above mentioned article.

LDA local density approximation, LDA-1/2 approximately includes the self-energy of excitations in semiconductors, PBE represents Perdew–Burke–Ernzerhof (PBE) exchange energy theory, HSE represents Heyd–Scuseria–Ernzerhof exchange–correlation functional uses an error function screened Coulomb potential to calculate the exchange portion of the energy.

ΤΝΙ

2. A detailed full band analysis for Undoped and Doped ZnO,

Lattice parameters 'a' and 'c' used as input parameters. The bandgap at Γ valley have been calibrated against experiments and compared with DFT based calculated energy band gap.

Parameters	LDA	PBE	HSE06	LDA+U	Experimental	FullBand Simulator
a (Å)	3.210 ³	3.284 ^{4.5}	3.262 ^{4.5}	3.197 ⁶	3.253 ¹⁹⁻²¹	3.254
c (Å)	5.136 ³	5.296 ^{4.5}	5.212 ^{4.5}	5.154 ⁶	5.205 ¹⁹⁻²¹	5.21
u	0.380	0.378	0.381	0.378	0.380	0.380
P*	0.000	0.002	-0.001	0.002	0.000	0.000
E _g (eV)	0.7941 ³	3.413 ^{4.5}	2.464 ^{4.5}	1.1541 ⁶	3.44 ³⁻⁵	3.428

For more details download full Article: <u>https://www.technextlab.com/publication.html</u>

Crystallite size determined by DS formula and WH plot, strain, lattice constants and anion-cation bond length for undoped and Cd doped ZnO thin films along with optical and simulated energy band gaps using EPM method with optimized internal parameter (u) at gamma valley.

ZnO Samples	t _{DS} (nm)			t _{WH}	t _{wH} Strain		tice stant	Internal Parameter	Bond Length	Optical Band	Simulated Band gap
Zilo Samples	(100)	(002)	(101)	(nm)		a (Å)	c (Å)	u	(Å)	gap (eV)	(eV)
Undoped	11	18	10	26	6.5×10 ⁻³	3.324	5.243	0.4035	2.013	3.22	3.21785
0.45at.% Cd doped	16	20	17	13	-8.0 ×10 ⁻³	3.328	5.190	0.4023	2.009	3.20	3.19845
0.51at.% Cd doped	19	21	19	26	1.5 ×10 ⁻³	3.332	5.161	0.4025	2.007	3.19	3.19286
0.56at.% Cd doped	11	18	10	31	10.0 ×10 ⁻³	3.313	5.225	0.4040	2.006	3.15	3.15996