

GaNFET Simulation

*P. K. Saxena *at. el.*, Atomistic Level Process to Device Simulation of GaNFET Using TNL TCAD Tools, <u>Book</u> <u>Chapter, © Springer Nature</u> (2020) 176, Lecture Notes in Electrical Engineering ISBN 978-981-15-5261-8 ISBN 978-981-15-5262-5 (eBook)

GaNFET Epitaxial Growth

Epi-growth has been done with the following process parameters:

Parameters	Values	Unit	
Time	30	S	
Temperature	800	°C	
Surface energy	2	eV	
Desorption barrier energy	4	eV	
Schwoebel barrier	0.002	eV	
Incorporation barrier	0.05	eV	
Nearest neighbor attraction	0.05	eV	

Precursors and gas ambience used during simulation

Materials	Partial pressure					
	Ga (mbar)	Al (mbar)	N2 (mbar)			
GaN	0.3	0.0	3.0			
Ga _{0.85} Al _{0.15} N	0.3	0.03	3.0			
Ga _{0.7} Al _{0.3} N	0.28	0.05	3.0			
Ga _{0.61} Al _{0.39} N	0.25	0.10	3.0			

GaNFET Case Studies

Variation of lattice constant with Al mole fraction

Surface roughness at the interface of AlGaN/GaN

GaNFET Case Studies

GaNFET Case Studies

InGaAs/InP Infrared Photodetector

*P. K. Saxena *at. el.*, Numerical simulation of InxGa1–xAs/InP PIN photodetector for optimum performance at 298 K, *Optical and Quantum Electronics* (2020) **52**:374

Infrared Detector

p ⁺ - In _{0.53} Ga _{0.47} As (150 nm)	p- InP	<i>i</i> - In _{0.53} Ga _{0.47} As (2.5μm)	n-InP (2.6 μm)
--	-----------	--	-------------------

Infrared Detector

Doping dose (cm ⁻³)	Current density at specified absorbing layer thickness (A/cm ²)				
	2 µm	2.5 μm	3 µm		
5.1×10 ¹⁵	2.53×10^{-07}	2.53926×10^{-07}	2.54×10^{-07}		
1.1×10^{16}	1.62×10^{-07}	1.63×10^{-07}	1.63×10^{-07}		
5.1×10^{16}	2.6456×10^{-08}	2.6898×10^{-08}	2.7595×10^{-08}		

Quantum Efficiency

FDSOI MOSFET

*P. K. Saxena *at. el.,* A Comparative Study for Scaling FDSOI Technology up to 7nm –Based on Particle device Simulation, *Jaournal of Nano & Optoelectronics*(2020), under Review.

FDSOI MOSFET

FDSOI: CARRIERS DENSITY

FDSOI MOSFET RESULTS

arameters	Nodes (nm)	14nm	10nm	7nm	14nm	10nm	7nm	
		Single Gate			Double Gate			
	Leff (nm)	22	14	10	22	14	10	
	Weff (nm)	10		8	10		8	
e D	Tox (nm)	1	0.85	0.75	0.75	0.85	0.75	
Structure	Doping (/cm ³)	1×10 ²⁴	5×10 ²⁴	2×10 ²⁵	2×10 ²⁵	5×10 ²⁴	2×10 ²⁵	
	Tsoi (nm)	40	30	20	20	30	20	
Device rameters	Vth (mV)	0.3	0.22	0.2	0.2	0.4	0.5	
	SS (/mV/dec)	63.3	67.9	82.9	82.9	87.4	72.2	
	gm (mS/µm)	0.252	0.437	0.499	0.499	0.494	0.449	
Pa								

FDSOI TECHNOLOGY UP TO 7NM

Scattering Rates

> Intervalley,

- Acoustic and
- Coulomb

DRIFT VELOCITY

Carrier Drift Velocity for 7nm, 10nm and 14nm (Back Gate off)

Carrier Drift velocity a) 14nm b) 10nm c) 7nm

CARRIER AVERAGE ENERGY

a) 14nm FDSOI MOSFET b) 10nm FDSOI MOSFET c) 7nm FDSOI MOSFET

Transfer I_d - V_g Characteristics

+ 7nm FDSOI

10nm FDSOI

+ 14nm FDSOI

1.05

0.95

0.90

0.85

0.80

0.75 0.70

0.65

0.50

≤ 0.40

J 0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05 -0.10

-0.15

-0.4 -0.3

-0.2

-0.1

0.0

0.1

Vg(V)

0.2

0.3

0,4

0.5

0,6

10.0

7.5

5.0

2.5

0.0

-0.4 -0.3

-0.2

-0.1

0,0

0.1

Vg(V)

0.2

0.3

0.4

0.5

0.6

Single Gate I_d - V_d Characteristics

I_V_Characteristic

Dual Gate I_d - V_d Characteristics

I_V_Characteristic

MOSFET: Carrier Density

MOSFET: Carrier Drift Velocity

MOSFET Transfer Characteristics

Tunneling FET

1.550E+25

Tunneling FET

Tunneling FET Transfer Characteristics

TNL's tools support advanced and unique licensing models tailored for unique customer needs.

- > ADVANCED LICENSING OPTIONS:
- Term-Based
- Perpetual
- TCAD Academic Suite
- 24x7 Technical Support for Academic Institutions

