Atomistic Thin Film Growth – EpiGrow Simulator Metalorganic Chemical Vapor Deposition (MOCVD)

Introduction

EpiGrow Simulator, MOCVD Reactor algorithms include precursors which are used in their gaseous form. Ultra-pure gases are introduced in the reaction chamber. This gas is carefully dosed with the precursor material in over to deposit an extremely fine layer of atoms on the surface of the wafer/substrate.

Crystal growth is favoured by the surface reactions dominated by their reaction rates taking place on the substrate surface. These reactions involve organic compounds or metalorganics and hydrides (which contain the required chemical elements for producing final end product) as the reactants. The thin films of the required material or compound semiconductor are epitaxially grown on the substrate surface.

Features

- In EpiGrow MOCVD Simulator, crystalline layers to create complex semiconductor multilayer structures
- Growth of crystals are through chemical reactions and not physical deposition, incorporating thermodynamically metastable alloys

- Ultra-pure precursor gases are injected into a reactor, usually with a nonreactive carrier gas.
- EpiGrow MOCVD reactors simulator typically operate under masstransport-limited growth regime.
- Required pyrolysis temperature increases with increasing chemical bond strength of the precursor
- EpiGrow MOCVD reactors simulator can be used to optimize Ideal processes to minimize the production of waste products

Chemical Reactions Inbuilt

Few Examples

Gas-phase reactions:

(G1) TMGa + H_2 = MMGa + 2CH₄ (G2) TBAs = AsH + C₄H₈ + H₂

Surface reaction

(S1) MMGa + AsH = GaAs(s) + CH_4

Gas-phase Mechanisms:

			k =	AT ⁿ e ⁻	Ea/ <i>R</i> T					Α	n	Ea
G1	TMG	=	DMG	+	CH ₃					$1.00 imes 10^{47}$	-9.18	76,996
G2	DMG	=	MMG	+	CH_3					7.67×10^{43}	-9.8	34,017
G3	MMG	=	Ga	+	CH_3					$1.68 imes 10^{30}$	-5.07	84,030
G4	TMG	+	NH ₃	\rightarrow	TMG:NH ₃					2.28×10^{34}	-8.31	3115
G5	TMG	+	NH_3	\rightarrow	DMG:NH ₂	+	CH_4			1.70×10^4	2	19,969
G6	DMG	+	NH_3	\rightarrow	DMG:NH ₃					$4.08 imes 10^{31}$	-7.03	3234
G7	DMG	+	NH ₃	\rightarrow	MMG:NH ₂	+	CH_4			5.30×10^{5}	1.56	20,744
G8	MMG	+	NH_3	\rightarrow	MMG:NH ₃					7.95×10^{24}	-5.21	2094
G9	MMG	+	NH_3	\rightarrow	GaNH ₂	+	CH_4			$8.10 imes 10^5$	1.3	17,722
G10	NH_3	+	CH_3	\rightarrow	NH ₂	+	CH_4			3.31×10^{3}	2.51	9859
G11	CH_3	+	H_2	\rightarrow	CH ₄	+	Н			1.20×10^{12}	0	12,518
G12	TMG	+	Н	\rightarrow	DMG	+	CH_4			$5.00 imes 10^{13}$	0	10,036
G13	DMG	+	Н	\rightarrow	MMG	+	CH ₄			5.00×10^{13}	0	10,036
G14	TMG:NH ₃	\rightarrow	MMG	+	2CH ₃	+	NH_3			1.33×10^{44}	-8.24	77,791
G15	CH_3	+	Н	+	М	\rightarrow	CH_4	+	NH_3	2.40×10^{22}	-1	0
G16	2CH ₃	=	C_2H_6							$2.00 imes 10^{13}$	0	0
G17	2H	+	Μ	=	H ₂	+	М			$2.00 imes 10^{16}$	0	0

TNI

		Path 1, $k =$	AT ⁿ e ^{-Ea/RT}			Α	n	Ea
1	MMG +	N(S)	\rightarrow	MMG(S)		$1.16 imes10^5$	2.98	0
2	$MMG(S) \rightarrow$	MMG	+	N(S)		$1.12 imes 10^{14}$	0.55	107,673
3	NH3 +	MMG(S)	\rightarrow	COMPM1(S)		3.35×10^{7}	3.33	0
4	$COMPM1(S) \rightarrow$	NH ₃	+	MMG(S)		5.70×10^{13}	-0.16	8146
5	MMG +	COMPM1(S)	\rightarrow	CH4	+ COMPM2(S)	1.23×10^{10}	3.22	23,446
6	NH3 +	COMPM2(S)	\rightarrow	COMPM3(S)		3.35×10^{7}	3.33	0
7	COMPM3(S) \rightarrow	NH ₃	+	COMPM2(S)		5.70×10^{13}	-0.161	8146
8	MMG +	COMPM3(S)	\rightarrow	CH ₄	+ COMPM4(S)	1.23×10^{10}	3.22	23,446
9	NH3 +	COMPM4(S)	\rightarrow	COMPM5(S)		3.35×10^{7}	3.33	0
10	$COMPM5(S) \rightarrow$	NH ₃	+	COMPM4(S)		5.70×10^{13}	-0.161	8146
11	COMPM5(S) \rightarrow	CH4	+	RINGM1(S)		1.23×10^{7}	3.22	23,446
12	Ga(S) +	RINGM1(S)	\rightarrow	RINGM2(S)	+ N(S)	3.35×10^{7}	3.33	0
13	RINGM2(S) \rightarrow	3H ₂	+	3GaN(B)	+ Ga(S)	$3.68 imes10^9$	2.05	59,610

Surface phase Mechanisms: Path 1, Path 2 and Path 3

			Path 2, $k = A$	T ⁿ e ^{-Ea}	/RT	Α	n	Ea
14	CH ₃	+	Ga(S)	\rightarrow	MMG(S)	$1.76 imes10^9$	1.39	0
15	MMG(S)	\rightarrow	CH ₃	+	Ga(S)	4.54×10^{13}	0.0346	79,480
16	NH ₂	+	Ga(S)	\rightarrow	$NH_2(S)$	3.17×10^8	1.83	0
17	GaNH ₂	+	N(S)	\rightarrow	GaNH ₂ (s)	2.27×10^{6}	2.247	0
18	GaNH ₂ (S)	\rightarrow	GaNH ₂	+	N(S)	4.83×10^{13}	0.614	83,881
19	COMPMM1(S)	\rightarrow	CH_4	+	$GaNH_2(S)$	1.49×10^{11}	0.609	25,950
20	MMG	+	GaNH ₂ (S)	\rightarrow	COMPMM1(S)	$1.16 imes 10^5$	2.98	0
21	NH_3	+	COMPMM1(S)	\rightarrow	COMPMM2(S)	3.35×10^{7}	3.33	0
22	COMPMM2(S)	\rightarrow	CH_4	+	COMPMM3(S)	1.49×10^{11}	0.609	25,950
23	MMG	+	COMPMM3(S)	\rightarrow	COMPMM4(S)	$1.16 imes 10^5$	2.98	0
24	NH_3	+	COMPMM4(S)	\rightarrow	COMPMM5(S)	3.35×10^{7}	3.33	0
25	COMPMM5(S)	\rightarrow	CH ₄	+	RINGM1(S)	$1.49 imes10^{11}$	0.609	25,950
26	$NH_2(S)$	\rightarrow	NH ₂	+	Ga(S)	1.45×10^{14}	0.09	59,786
27	COMPMM1(S)	\rightarrow	MMG	+	GaNH ₂ (S)	$1.00 imes10^{14}$	0.55	42,819
28	COMPMM2(S)	\rightarrow	NH_3	+	COMPMM1(S)	5.70×10^{13}	-0.1	8146
29	COMPMM4(S)	\rightarrow	MMG	+	COMPMM3(S)	$1.00 imes10^{14}$	0.55	42,819
30	COMPMM5(S)	\rightarrow	NH_3	+	COMPMM4(S)	5.70×10^{13}	-0.1	8146
31	Ga	+	N(S)	\rightarrow	Ga(S)	$1.00 imes 10^{11}$	1.5	0
32	Ga(S)	+	$NH_2(S)$	\rightarrow	$GaNH_2 + Ga(S)$	1.00×10^{25}	0	0
33	Ga(S)	\rightarrow	Ga	+	N(S)	$1.00 imes 10^{13}$	0	45,168
34	6CH ₃	+	RINGM2(S)	\rightarrow	COM1(S)	7.55×10^{7}	2.31	0
35	COM1(S)	\rightarrow	6CH ₃	+	RINGM2(S)	$1.00 imes 10^{13}$	0.71	45,506
36	COM1(S)	\rightarrow	6CH ₄	+	3GaN(B) + Ga(S)	$4.00 imes 10^{12}$	0	49,675

TNL

			I	Path 3, k	$x = AT^{n}e^{-Ea/RT}$			Α	n	Ea
37	TMG	+	N(S)	\rightarrow	TMG(S)			$1.16 imes10^5$	2.98	0
38	NH_3	+	TMG(S)	\rightarrow	TCOM1(S)			3.35×10^{7}	3.33	0
39	TCOM1(S)	\rightarrow	CH ₄	+	TCOM2(S)			1.49×10^{11}	0.609	32,785
40	Ga(S)	+	TCOM2(S)	\rightarrow	TCOM3(S)	+	N(S)	3.35×10^{7}	3.33	0
41	TCOM3(S)	\rightarrow	$2CH_4$	+	GaN(B)	+	Ga(S)	1.49×10^{11}	0.609	49,675
42	TMG(S)	\rightarrow	TMG	+	N(S)			1.12×10^{14}	0.55	49,675
43	TCOM1(S)	\rightarrow	NH_3	+	TMG(S)			5.70×10^{13}	-0.161	11,922
44	TMG:NH ₃	+	N(S)	\rightarrow	TCOM1(S)			1.16×10^5	2.98	0
45	TCOM1(S)	\rightarrow	TMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	49,675
46	TCOM1(S)	\rightarrow	$2CH_3$	+	MMG(S)	+	NH3 +N(S)	1.12×10^{14}	0.55	10,7673
47	MMGNH ₃	+	N(S)	\rightarrow	COMPM1(S)			$1.16 imes 10^5$	2.98	0
48	COMPM1(S)	\rightarrow	MMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	107,673
49	MMG:NH ₃	+	COMPM1(S)	\rightarrow	CH_4	+	COMPM3(S)	1.23×10^{10}	3.22	23,446
50	MMG:NH ₃	+	COMPM3(S)	\rightarrow	CH_4	+	COMPM5(S)	1.23×10^{10}	3.22	23,446
51	MMG:NH ₃	+	GaNH ₂ (S)	\rightarrow	COMPMM2(S)			$1.16 imes 10^5$	2.98	0
52	MMG:NH ₃	+	COMPMM3(S)	\rightarrow	COMPMM5(S)			$1.16 imes 10^5$	2.98	0

Chemical Composition of compound on the surface

Compounds Names	Chemical Formula
COMPM1(S)	NH ₃ ·MMG(S)
COMPM2(S)	$Ga \cdot NH_2 \cdot MMG(S)$
COMPM3(S)	$NH_3 \cdot Ga \cdot NH_2 \cdot MMG(S)$
COMPM4(S)	$Ga \cdot NH_2 \cdot Ga \cdot NH_2 \cdot MMG(S)$
COMPM5(S)	NH ₃ ·Ga·NH ₂ ·Ga·NH ₂ ·MMG(S)
RINGM1(S)	NH2·Ga·NH2·Ga·NH2·Ga(S)
RINGM2(S)	(S)NH ₂ ·Ga·NH ₂ ·Ga·NH ₂ ·Ga(S)
COMPMM1(S)	$MMG \cdot GaNH_2(S)$
COMPMM2(S)	NH ₃ ·MMG·GaNH ₂ ·Ga(S)
COMPMM3(S)	$NH_2 \cdot Ga \cdot NH_2 \cdot Ga(S)$
COMPMM4(S)	$MMG \cdot NH_2 \cdot Ga \cdot NH_2 \cdot Ga(S)$
COMPMM5(S)	NH ₃ ·MMG·NH ₂ ·Ga·NH ₂ ·Ga(S)
TCOM1(S)	NH ₃ ·TMG(S)
TCOM2(S)	NH ₂ ·DMG(S)
TCOM3(3)	(S)NH ₂ ·DMG(S)
COM1(S)	RINGM2(S) CH ₃ complex

Physics

Reaction rates depend on the concentrations of the reactants involved in the reaction equation. A rate law is used to express the relation between the rate and these concentrations. Usually reactions have their rate laws in the following form-

TNL

$$r = k[A]^x[B]^y \dots$$

where 'k' is rate constant, feature of a given reaction. The powers x, y ... are the numbers that must be determined experimentally. 'x' is the order with respect to A, and 'y' is the order of B.

> Partial pressure is defined using flow rates of precursors:

$$P = \frac{nRT}{V}$$

Here,

- n= Number of moles of reactants, R=Gas constant= 8.31446261815324 JK⁻¹mol⁻¹
- T= Temperature and V=Chamber Volume (Litre)
- > The forward rate constant (growth rate) is found to have the relation with temperature as follows-

$$K = AT^n exp((-E_a)/RT)$$

The activation energy E_a , which is the minimum amount of energy required to initiate a chemical reaction, is in unit of energy.mol⁻¹ and T is temperature exponent. A is the pre-exponential factor and it is usually found to be independent of temperature. Besides it must have the same dimensions and units as k.

Benefits can be realized

- > Graphical User Interface (GUI) based Simulator
- Binary, ternary and quaternary compound semiconductor based epitaxial growth
- Users have flexibilities to accommodate by inputting their own chemical reactions as text file

ΓΝΙ

- > Surface profiles Extracting Roughness
- Defects Extraction (point/clusters)
- > Extraction of dislocations & Stress/Strain
- > Fewer experiments for optimization
- Reduction in waste during experimentation

- > Ability to deal with different reactive species and reactor geometries
- > On-line process control

TNL