

Low- & High-pressure MOCVD Reactors Epitaxial Growth Solution Solar Cell

CHALLENGES: SOLAR CELL TECHNOLOGY

Achieving high-efficiency solar cells and at the same time driving down the cell cost □ Materials Used : Group III-V Arsenides, Phosphides, and Nitrides, Group IV, IV-VI and **II-VI** semiconductors

□ III–V compound solar cells: shown performance improvement at ~1% (absolute) increase per year, with a recent record efficiency of 44.7%

□ III–V solar cells on Si substrate through heteroepitaxial integration

• Among competing photovoltaic technologies, the expensive cost is biggest impediment in their large-scale deployment for terrestrial applications

Performance: Solar Cell Technology

- > Most significant cost III–V solar cells is the cost of substrate.
- > Typically, GaAs or Ge substrates used for III–V multijunction solar cell growth,
- Smaller in diameter and significantly more expensive than Si substrate
- > Transitioning from a 4" Ge substrate to a 8" Si substrate would reduce 60% cost

Technology	Efficiency	Room for Improvement		
1J Single junction Si	~25%	Saturated		
2J InGaP/GaAs based multijunction	32.9% -36.5%	Performance improvement increase		
3J InGaP/GaAs//Si or III-V Nitrides	~40%			
4J AlGaAs/ GaAs/Si/InGaAs tandem	=44.7%	Reported further room for in		
Thin strained layers (SLs) and superlattices	~ 35%	To reduce Defects		

l growth, te :e 60% cos

at ~1%

mprovement

Design Criteria & Challenges

Two key approaches for integrating III–V multijunction solar cells on Si substrate:

- (i) Heteroepitaxial growth: *very promising path* with several challenges e.g. lattice mismatch, strain, types of defect generation
- (ii) Mechanical stacking or wafer bonding: *suffers* with wafer bowing or cracking due to large thermal mismatch, free from latticemismatch, depends upon Hetroepitaxy growth

^{*}E.T. Yu, J.O. McCaldin, T.C. McGill, Band offsets in semiconductor heterojunctions, in: E. Henry, T. David (Eds.), Solid State Physics, Academic Press, 1992, pp. 1–146

HETEROEPITAXY: CHALLENGES

Band gaps Tuning : depends on material thickness, composition, defects etc Efficient absorption from the incident light: thickness of active region □ High thermal/chemical stability: allow operations in extreme conditions in space 4% lattice-mismatch between GaAs & Si: Epitaxy of GaAs on Si extremely challenging Formation of defects and dislocations

□ Such defects limit solar cell performance

Substrate	Si	Al_2O_3	SiC	Bulk GaN	AIN
Lattice Mismatch (%)	17	16	3.4	-	2.5
Thermal Conductivity	150	35	490	260	319
Resistivity (ohm-cm)	10 ⁴	1014	~10 ¹²	-	>101

CHALLENGES: GaN/Si EPITAXY

GaN directly on Si or Sapphire encounters several challenges: large lattice mismatch (16% to 20.4%), thermal expansion coefficient (TEC) mismatch ~ 53% GaN buffer layer : Avoid formation of cracks and several other technological challenges

 \Box Stacks of $In_xGa_{1-x}N$ layers on GaN buffer layer : To balance compressive and tensile strain

Growth of the GaN buffer layer on the Si substrate : *Still not well understood*

• Formation of *amorphous SiNx*, deteriorates crystalline quality.

Pre-nitridation process of Si substrate greatly influences surface morphology. However, nitridation time and temperature highly influence strain generation \Box NH₃ pre-flow with smaller step size time and the optimum substrate temperature are still *debatable* to achieve a single-crystalline GaN on Si or Sapphire substrates

CHALLENGES: GaN/Si EPITAXY

GaN-on-Si devices recently attracted much attention *reliable Solar cell* applications due to cost & large size Si substrates with possibility of co-processing in **CMOS** foundries

- Contributor to incident power loss at multiple interfaces due to *parasitic effects*
- Type of conductivity & formation mechanism of parasitic channel is *controversial*
- Given Series Formation of a p-type conductive channel at the GaN/Si interface,
- Formation of an n-type electron channel induced by the strong polarization field at the GaN/Si interface.

Understanding the behaviors of the parasitic interfaces at multiple junctions: crucial to reduce the losses

Unsolved problem requires an unambiguous identification of these issues and require lot of investment to do *Hits & Trials*

INPUTS: MOCVD PROCESS

Chamber Condition Showerhead Based Injector Based 	Injector Parameters			Precurssor Condition Number of Port Precursor 1 Flow Rate	n 0 Select Prec atm cc/s
	Chamber Volume (Itrs.) Chamber Pressure Ceiling Height (cm)	1.4 10 2.0	torr 💌	Load Reaction	Step 1 Load 1
	Chamber Temperature (C) Sticking Coeff.	100 1]	Number of Port Precursor 1	4 🔹 Select Prec V Select Precursc
Many More parameter	s details Require			Load Reaction	Ga(CH3)3 (CH3)3CAsH2 H2 AI(CH3)3 NH3 CH3 O2

METHODOLOGY: MOCVD PROCESS

Schwoebel barrier: The atom diffuses from the site exactly above the edge atom to the site immediately next to the edge atom as;

Incorporation barrier: incorporates into the edge on the same surface level.

The atom

PLANETARY MOCVD PROCESS

Planetary MOCVD architecture implemented in *TNL-Injector* simulator equivalent to the AIX 200/4 horizontal MOCVD reactor.

Inlet of the reactor is divided into two parts by a separator through which the group III and V precursors can be fed into the upper and lower inlet respectively.

where J_A is the diffusion flux of specie A, is the concentration of species A, x is the direction perpendicular to the substrate surface, *R* is the gas constant, *T* is the absolutc_A e temperature. δ is the chamber boundary layer thickness.

 D_{A_B} is the diffusivity of the bulk stream reactants and dependent on Leonard-Jones parameters (σ, Ω) based on the Chapman-Enskog theory

$$D_{A_B} = 2.7 \times 10^{-3} \frac{\sqrt{T^3 \left(\frac{1}{M_A} + \frac{1}{M_B}\right)}}{p \,\sigma_{AB}^2 \,\Omega_{D,AB}}$$

M is the molecular weight, p is the pressure, σ_{AB} is the collision diameter, and Ω_{D} , AB is the collision integral and dependent on temperature and intermolecular potential.

Average boundary layer thickness, δ ,

$$\bar{\delta} = \frac{10}{3} \sqrt{\frac{\mu_{mix}L}{\rho U}}$$

PLANETARY MOCVD PROCESS

An Injector MOCVD reaction initiate either surface kinetic or mass transport control. Suppose C_g is the concentration of the bulk gas and C_s is the concentration of reactants at the substrate interface. The concentration of the reactants drops from the bulk to the substrate surface and the corresponding mass flux,

$$I_{gs} = h_g (C_g - C_s)$$

where h_g is the gas mass transfer coefficient, insensitive to variations in temperature.

The flux consumed at the surface $I_s = k_s(C_s)$ where $c_s = -$

where k_{e} is the slowest surface reaction rate constant.

For $k_s >> h_g$, the system dictated by mass controlled , low gas transport rate through the boundary layer limits the rapid surface reaction.

Surface reaction control dominates for $h_g \gg k_s$, the surface reaction is slow even through sufficient reactant gas is available. Additionally, h_g increases with increasing pressure and decreasing temperature and k_s follows the Arrhenius equation.

$$\frac{C_g}{+\frac{k_g}{h_g}}$$

WORKING

- Gas phase kinetics
- Surface phase kinetics
- Each monolayer with atoms positions
- Defects layer by layer quantitatively and qualitatively
- Strain layer by layer
- Surface Roughness
- Lattice Constant etc.

CHEMICAL KINETICS SOLUTION

- TNL Chemical Kinetics database includes gasand surface phase chemical reactions
- Users may chose any desired equation or set of equations for the precursors they input based on requirements
- Users have flexibilities to write their own chemical

reactions

H2,S	SiH4			Load	Out	put_\	Window
No.	Name	A	n	E(Cal)	1	No.	Gas_Reaction
1	G 1 SiH4> SiH2 + H2	9.49	1.7	54710		1	G 1 SiH4> SiH2 +
	G 2 SiH4 + SiH2> Si2H6	10.26		50200		2	G 2 SiH4 + SiH2>
	G 3 Si2H6 + SiH2> HSiSiH3 +	14.24		8900		3	G 3 Si2H6 + SiH2
	G 4 Si2H6> H2 + HSiSiH3	9.96		54200		4	G 4 Si2H6> H2 + I
5	G 5 HSiSiH3> H2SiSiH2	13.40	0.2	5380		5	G 5 HSiSiH3> H2
6	G 6 HSiSiH3+H2> SiH2 + SiH4	13.97	0	4092			
					Add_Gas		
No.	Name	A	n	E(Cal)		No.	Surface_Reaction
No.	Name S 2 SiH2 + sigma> Si+H2	A 11.76	n 0.5	E(Cal)		No. 2	Surface_Reaction S 2 SIH2 + sigma
No. 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250		No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma>
<mark>No.</mark> 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250	Add_Surface	No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma>
No. 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250	Add_Surface	No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma3

16 ISIH3 + SIH4	A 9.49 10.26 14.24	n 1.7 1.7 0.4	E(Cal) 54710 50200 8900
iH3 i2	9.96 13.40	1.8 0.2	54200 5380
	A	n	F(Cal)
H2	11.76 11.36	0.5	0 17250
Save)		Apply

TNL CHEMICAL DATABASE

Precursors for MN Growth (M = Ga, Al, In)TMM, DMM, NH₃, AsH₃, PH₃, TBP etc. Dopants Cp₂ Mg, SiH₄, DEZ, DETe, CBrCl₃ etc. **Carrier Gases: MN Growth**

 N_2 , H_2 , Ar etc.

Here,

TBP-tertbutylphosphine DEZ- DiethylZinc DETe- DiethylTelluride CBrCl₃- Bromotrichloromethane $A + B \leftrightarrow AB$

$$\frac{d[AB]}{dt} = \frac{k_1}{1 + k_2[A]}$$

Reaction rates in forward and reverse directions

$$k = AT^n \exp \left(\right)$$

$[A][B]^{2}$ $\overline{A] + k_3 [B]^{1/2}}$

Gas-phase Mechanisms Reactions

			k =	AT ⁿ e ⁻	Ea/RT					A	n	Ea
G1	TMG	=	DMG	+	CH ₃					$1.00 imes 10^{47}$	-9.18	76,996
G2	DMG	=	MMG	+	CH ₃					7.67×10^{43}	-9.8	34,017
G3	MMG	=	Ga	+	CH ₃					1.68×10^{30}	-5.07	84,030
G4	TMG	+	NH ₃	\rightarrow	TMG:NH ₃					2.28×10^{34}	-8.31	3115
G5	TMG	+	NH ₃	\rightarrow	DMG:NH ₂	+	CH ₄			1.70×10^{4}	2	19,969
G6	DMG	+	NH ₃	\rightarrow	DMG:NH ₃					4.08×10^{31}	-7.03	3234
G7	DMG	+	NH ₃	\rightarrow	MMG:NH ₂	+	CH ₄			5.30×10^{5}	1.56	20,744
G8	MMG	+	NH ₃	\rightarrow	MMG:NH ₃					7.95×10^{24}	-5.21	2094
G9	MMG	+	NH ₃	\rightarrow	GaNH ₂	+	CH ₄			8.10×10^{5}	1.3	17,722
G10	NH ₃	+	CH ₃	\rightarrow	NH ₂	+	CH ₄			3.31×10^{3}	2.51	9859
G11	CH ₃	+	H ₂	\rightarrow	CH ₄	+	Н			1.20×10^{12}	0	12,518
G12	TMG	+	H	\rightarrow	DMG	+	CH ₄			5.00×10^{13}	0	10,036
G13	DMG	+	Н	\rightarrow	MMG	+	CH ₄			5.00×10^{13}	0	10,036
G14	TMG:NH ₃	\rightarrow	MMG	+	2CH ₃	+	NH ₃			1.33×10^{44}	-8.24	77,791
G15	CH ₃	+	Н	+	М	\rightarrow	CH ₄	+	NH ₃	2.40×10^{22}	-1	0
G16	2CH ₃	=	C ₂ H ₆							2.00×10^{13}	0	0
G17	2H	+	M	=	H ₂	+	М			2.00×10^{16}	0	0

Surface phase Reactions: PATH 1

			Path 1, $k = A$	AT"e ^{-Ea/RI}				A	n	Ea
1	MMG	+	N(S)	\rightarrow	MMG(S)			$1.16 imes 10^5$	2.98	0
2	MMG(S)	\rightarrow	MMG	+	N(S)			1.12×10^{14}	0.55	107,673
3	NH ₃	+	MMG(S)	\rightarrow	COMPM1(S)			3.35×10^{7}	3.33	0
4	COMPM1(S) -	\rightarrow	NH ₃	+	MMG(S)			5.70×10^{13}	-0.16	8146
5	MMG	+	COMPM1(S)	\rightarrow	CH4	+ (OMPM2(S)	1.23×10^{10}	3.22	23,446
6	NH ₃	+	COMPM2(S)	\rightarrow	COMPM3(S)			3.35×10^{7}	3.33	0
7	COMPM3(S) -	+	NH ₃	+	COMPM2(S)			5.70×10^{13}	- <mark>0.161</mark>	8146
8	MMG	+	COMPM3(S)	\rightarrow	CH ₄	+ (OMPM4(S)	1.23×10^{10}	3.22	23,446
9	NH ₃	+	COMPM4(S)	\rightarrow	COMPM5(S)			3.35×10^{7}	3.33	0
10	COMPM5(S) -	÷	NH ₃	+	COMPM4(S)			5.70×10^{13}	-0.161	8146
11	COMPM5(S) -	\rightarrow	CH4	+	RINGM1(S)			1.23×10^{7}	3.22	23,446
12	Ga(S)	+	RINGM1(S)	\rightarrow	RINGM2(S)	+	N(S)	3.35×10^{7}	3.33	0
13	RINGM2(S)	\rightarrow	3H ₂	+	3GaN(B)	+	Ga(S)	3.68×10^{9}	2.05	59,610

Surface phase Reactions: PATH 2

			Path 2, $k = A$	T ⁿ e ^{-Ea}	√RT	A	n
14	CH ₃	+	Ga(S)	\rightarrow	MMG(S)	1.76×10^{9}	1.39
15	MMG(S)	\rightarrow	CH ₃	+	Ga(S)	4.54×10^{13}	0.0346
16	NH ₂	+	Ga(S)	\rightarrow	NH ₂ (S)	3.17×10^{8}	1.83
17	GaNH ₂	+	N(S)	\rightarrow	$GaNH_2(s)$	2.27×10^{6}	2.247
18	GaNH ₂ (S)	\rightarrow	GaNH ₂	+	N(S)	4.83×10^{13}	0.614
19	COMPMM1(S)	\rightarrow	CH ₄	+	GaNH ₂ (S)	1.49×10^{11}	0.609
20	MMG	+	GaNH ₂ (S)	\rightarrow	COMPMM1(S)	1.16×10^{5}	2.98
21	NH ₃	+	COMPMM1(S)	\rightarrow	COMPMM2(S)	3.35×10^{7}	3.33
22	COMPMM2(S)	\rightarrow	CH ₄	+	COMPMM3(S)	1.49×10^{11}	0.609
23	MMG	+	COMPMM3(S)	\rightarrow	COMPMM4(S)	1.16×10^{5}	2.98
24	NH ₃	+	COMPMM4(S)	\rightarrow	COMPMM5(S)	3.35×10^{7}	3.33
25	COMPMM5(S)	\rightarrow	CH ₄	+	RINGM1(S)	1.49×10^{11}	0.609
26	NH ₂ (S)	\rightarrow	NH ₂	+	Ga(S)	1.45×10^{14}	0.09
27	COMPMM1(S)	\rightarrow	MMG	+	$GaNH_2(S)$	1.00×10^{14}	0.55
28	COMPMM2(S)	\rightarrow	NH ₃	+	COMPMM1(S)	5.70×10^{13}	-0.1
29	COMPMM4(S)	\rightarrow	MMG	+	COMPMM3(S)	1.00×10^{14}	0.55
30	COMPMM5(S)	\rightarrow	NH ₃	+	COMPMM4(S)	5.70×10^{13}	-0.1
31	Ga	+	N(S)	\rightarrow	Ga(S)	$1.00 imes 10^{11}$	1.5
32	Ga(S)	+	$NH_2(S)$	\rightarrow	GaNH ₂ +Ga(S)	1.00×10^{25}	0
33	Ga(S)	\rightarrow	Ga	+	N(S)	1.00×10^{13}	0
34	6CH ₃	+	RINGM2(S)	\rightarrow	COM1(S)	7.55×10^{7}	2.31
35	COM1(S)	\rightarrow	6CH ₃	+	RINGM2(S)	1.00×10^{13}	0.71
36	COM1(S)	\rightarrow	6CH ₄	+	3GaN(B) + Ga(S)	$4.00 imes 10^{12}$	0

Ea	
0	
79,480	
0	
0	
83,881	
25,950	
0	
0	
25,950	
0	
0	
25,950	
59,786	
42,819	
8146	
42,819	
8146	
0	
0	
45,168	
0	
45,506	
49,675	TN

Surface phase Reactions: PATH 3

			Pa	th 3, 1	$k = AT^{n}e^{-Ea/RT}$			Α	n	Ea
37	TMG	+	N(S)	\rightarrow	TMG(S)			1.16×10^{5}	2.98	0
38	NH ₃	+	TMG(S)	\rightarrow	TCOM1(S)			3.35×10^{7}	3.33	0
39	TCOM1(S)	\rightarrow	CH ₄	+	TCOM2(S)			1.49×10^{11}	0.609	32,785
40	Ga(S)	+	TCOM2(S)	\rightarrow	TCOM3(S)	+	N(S)	3.35×10^{7}	3.33	0
1	TCOM3(S)	\rightarrow	2CH ₄	+	GaN(B)	+	Ga(S)	1.49×10^{11}	0.609	49,675
12	TMG(S)	\rightarrow	TMG	+	N(S)			1.12×10^{14}	0.55	49,675
13	TCOM1(S)	\rightarrow	NH ₃	+	TMG(S)			5.70×10^{13}	-0.161	11,922
4	TMG:NH ₃	+	N(S)	\rightarrow	TCOM1(S)			1.16×10^{5}	2.98	0
5	TCOM1(S)	\rightarrow	TMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	49,675
6	TCOM1(S)	\rightarrow	2CH ₃	+	MMG(S)	+	NH3 +N(S)	1.12×10^{14}	0.55	10,7673
7	MMGNH ₃	+	N(S)	\rightarrow	COMPM1(S)			1.16×10^{5}	2.98	0
18	COMPM1(S)	\rightarrow	MMG:NH ₃	+	N(S)			$1.12 imes 10^{14}$	0.55	107,673
19	MMG:NH ₃	+	COMPM1(S)	\rightarrow	CH ₄	+	COMPM3(S)	1.23×10^{10}	3.22	23,446
50	MMG:NH ₃	+	COMPM3(S)	\rightarrow	CH ₄	+	COMPM5(S)	1.23×10^{10}	3.22	23,446
51	MMG:NH ₃	+	GaNH ₂ (S)	\rightarrow	COMPMM2(S)			1.16×10^{5}	2.98	0
52	MMG:NH ₃	+	COMPMM3(S)	\rightarrow	COMPMM5(S)			1.16×10^{5}	2.98	0

Total Deposition Rate:

R = A + H + D

A - Adsorption, H – Diffusion, D - Desorption rates

$$\begin{split} A &= Flw & \text{Here, I and w denote length and width of substrate} \\ h_j &= D_0 exp\left(-\frac{E_j}{k_B T}\right) & \text{The characteristic vibration frequency, } D_0 = \\ d_j &= D_0 exp\left(-\frac{E_j^{des}}{k_B T}\right) & \text{with} & E_j^{des} = E_S + nE_n \end{split}$$

 $2k_BT$ h

EXTRACTABLE

Lattice Parameters: 1.

Layer by layer lattice parameter Extraction. Averaging layer by layer lattice constant may produce overall lattice constant of film.

□ The lattice constant can be calibrated with lattice constant with XRD studies.

Lattice constant includes all the strain, defects etc effects.

2. Strain:

□ Averaging layer by layer strain produce overall strain in the film.

The strain can be calibrated with experimental strain.

3. Surface Roughness:

Extract surface roughness as a function of growth time

$$r = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} [h_{ij} - \overline{h}]^2}{NxN}}$$

Here N is the total number of lattice points, h_{ii} is the height at a given lattice point located at position *i* and *j*, on the lattice and h_{ave} is the average height of all lattice points.

4. Mole fraction:

Extract number of atoms of different constituents layer by layer.

□ Ratio of group-III & V deposited atoms → Molefraction.

5. Defects :

Extract number of interstitials, vacancy etc layer by layer along with dislocation and Stacking Faults

CASE STUDY : **Si/AIN** PLANETARY MOCVD PROCESS

INPUT CONDITIONS

Parameters	Si/AlN	Pre-Nitridated Si/AIN	Parameters	Si/AlN	Pre-
Chamber	300	300			Si/AlN
Chamber Pressure	40	40	Nitridation Temperature (C)	-	1050
(mbar)			Nitridation Time (s)	-	30
Chamber Volume (lits)	1.4	1.4	Surface Energy (eV)	2.0	2.0
Ceiling Height (cm)	1	1	Desorption Barrier (eV)	3.0	3.0
Substrate Temperature (°C)	1050	1050	Schwoebel Barrier (eV)	0.05	0.05
Precursors	TMAI & NH ₃	TMAI & NH ₃	Incorporation Barrier (eV)	0.05	0.05
Precursors Flow Rate (sccm)	105 sccm & 1 slm	105 sccm & 1 slm	Nearest Neighbour (eV)	0.05	0.05
Carrier Gas	H ₂	H ₂	No. of Interactive Elements	1	1
PreNitridation(slm)	-	1	Substrate Dimension (A ²)	50x50	[Unit Cell] ²
		-			

Gas Phase Equations

AI(CH3)3 = AICH3 + 2CH3, A=3.5*10^15, AI(CH3)3 + NH3 = AI(CH3)3:NH3, A=3.0*10^12 n=0 AI(CH3)3:NH3 = AI(CH3)3 + NH3, A=5.0*10^10 n=0 AI(CH3)3:NH3 = (CH3)2AI:NH2 + CH4 , A=2.0*10^12 $AI(CH3)3:NH3 + NH3 = (CH3)2AI:NH2 + CH4 + NH3, A=2.0*10^{12}$ 2(CH3)2AI:NH2 = ((CH3)2AI:NH2)2, A=4.0*10^11 n=0 **##Gas to Surface Phase Equations** AI(CH3)3 + space = AI(S) + 3CH3, coll 1.0 AI(CH3)3:NH3 + space = AI(S) + 3CH3 + NH3, coll 1.0 AICH3 + space = AI(S) + CH3, coll 1.0 (CH3)2AI:NH2 + space = AIN(S) + 2CH4, coll 1.0 ((CH3)2AI:NH2)2 + space = 2AIN(S) + 4CH4, coll 1.0

n=0, Ea= 66500
n=0 Ea= 0.0
n=0 Ea= 22000
n=0 Ea= 27000
n=0 Ea= 13000
n=0 Ea= 0.0

OUTPUT

Without Nitridation

Pre-Nitridation for 30 s

DISLOCATIONS PER MONOLAYER

SURFACE ROUGHNESS

OTHER OUTPUT

Parameters	Si/AIN	Pre-Nitridated Si /AIN
Substrate Thickness (µm)	0.3258	0.3258
Si3N4 Thickness (nm)	-	3.7817
Total Deposited Atoms (AIN)	5046178	5233815
Vacancies (cm ⁻³)	36069	13393
Total Dislocation Density (cm ⁻³)	2503	1612
Al Atoms	≈50%	≈50%
N Atoms	≈50%	≈50%
Many More		

Patterned Substrate: Selective Epitaxy

TNL-Injector Simulator provides flexibilities to simulate regrowth processes at Atomistic Scale for Selective Epitaxy with capabilities:

- Process Optimization
- > Atomistic growth process for void-semiconductor photonic crystal (PhC)
- > Better understanding of invisible *Physical Phenomenon*
- > Patterned substrates Shapes: Steps, Grooves, Well etc.
- > Epitaxial growth through: MBE, MOVPE/MOCVD
- > Effects of regrowth on air-hole morphology
- > Comparison between patterned substrate hole regrown void's dimensions
- > patterned substrate hole: *play a very critical role in the final regrowth*
- > Many More Benefits

MAJOR CHALLENGES: DIMENSIONS OF AIR HOLE

Information Strictly Private and Confidential

Re-growth over Step Patterned Substrate

Regrowth of Si over GaAs Step Pattern Substrate Unit Cells representation

Regrowth of Si over GaAs Step Pattern Substrate Atomistic representation

TNL's tools support advanced and unique licensing models tailored for unique customer needs.

- > ADVANCED LICENSING OPTIONS:
- Term-Based
- Perpetual with Annual Maintenance Cost (AMC)
- TCAD Academic Suite
- 24x7 Technical Support for Academic Institutions

Publications

- 1. P.K. Saxena, numerical study of dual band (MW/LW) ir detector for Performance improvement, *Defence Science Journal*, vol. 67(2), (2017) pp. 141-148. DOI : 10.14429/dsj.67.11177
- 2. Praveen K. Saxena, Pankaj Srivastava, R. Trigunayat, An innovative approach for controlled epitaxial growth of GaAs in real MOCVD reactor environment, Journal of Alloys and Compounds, vol. 809 (2019) 151752. https://doi.org/10.1016/j.jallcom.2019.151752
- 3. Praveen Saxena, R. Trigunayat, Anchal Srivastava, Pankaj Srivastava, Md. Zain, R.K. Shukla, Nishant Kumar, Shivendra Tripathi, FULL ELECTRONIC BAND STURCTURE ANALYSIS OF Cd DOPED ZnO THIN FILMS DEPOSITED BY SOL-GEL SPIN COATING METHOD, II-VI US Workshop Proceedings, 2019.
- 4. R. K. Nanda, E. Mohapatra, T. P. Dash, P. Saxena, P. Srivastava, R. Trigutnayat, C. K. Maiti, Atomistic Level Process to Device Simulation of GaNFET Using TNL TCAD Tools, Advances in Electrical Control and Signal Systems pp 815-826, (2020), Spinger Book. https://doi.org/10.1007/978-981-15-5262-5 61
- 5. Sanjeev Tyagi, P. K. Saxena, Rishabh Kumar, Numerical simulation of InxGa1–xAs/InP PIN photodetector for optimum performance at 298 K, Optical and Quantum Electronics (2020) 52:374. https://doi.org/10.1007/s11082-020-02488-1
- 6. A. Srivastava, A. Saxena, P. K. Saxena, F. K.Gupta, P. Shakya, P. Srivastava, M. Dixit, S.Gambhir, R. K. Shukla & A. Srivastava, An innovative technique for electronic transport model of group-III nitrides, *Scientific Reports* 10, 18706 (2020).
- 7. PK Saxena, A Srivastava, A Saxena, F Gupta, P Shakya, A Srivastava, et. al., <u>An Innovative Model for Electronic Band Structure Analysis of</u> Doped and Un-Doped ZnO, Journal of Electronic Materials 50 (4), 2417-2424(2021).
- 8. P. K. Saxena, F. K. Gupta, A. Srivastava, P. Srivastava1 and Anshu Saxena, Ultrafast carrier's dynamics with scattering rate saturation in Ge thinfilmsUltrafast carrier's dynamics with scattering rate saturation in Ge thinfilms TechRxiv · Mar 17, 2022

